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Motivation
Retrieved from http://exoplanetarchive.ipac.caltech.edu on 03.28.13
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Planets are much much fainter than stars...

The brightest planets are still one million times fainter than their host stars

Commercial CCDs can achieve contrasts of 2048:1
The human eye can achieve 16384:1
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...So we block the star

Figure: Simulated, post-processed GPI data set.
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The Gemini Planet Imager

GPI Model. GPI as-built.

Savransky and Poyneer (LLNL) CASIS 05.22.2012 5 / 18



The Gemini Planet Imager
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Lyot Coronagraphy
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Figure: Lyot coronagraph. Based on [Sivaramakrishnan et al., 2001].
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Lyot Coronagraphy
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Figure: Lyot coronagraph. Based on [Sivaramakrishnan et al., 2001].
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Lyot Coronagraphy
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Lyot Coronagraphy
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Lyot Coronagraphy
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Figure: Apodized pupil Lyot coronagraph.
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Apodized Pupil Lyot Coronagraphy

Pre-apodize to remove residual diffraction:

L162 SOUMMER Vol. 618

Fig. 1.—Transverse cuts of the two wave fronts that subtract one another
in the Lyot stop plane (eq. [2]): the pupil wave (solid line) and the wave
diffracted by the mask (dashed line), for a clear circular aperture (top), then
for small and large obstructions. In the nonapodized case (left), the two waves
clearly do not match each other and the subtraction is not efficient. With
apodized apertures (right), the match is much better and the two curves are
proportional inside the aperture (generalized prolate solutions). The mask sizes
have been chosen for better visualization. [See the electronic edition of the
Journal for a color version of this figure.]

Fig. 2.—Throughput of the apodizer solution to the eigenvalue problem as
a function of the central obstruction and for several mask sizes. Vertical lines
indicate the geometry of existing telescopes. Apodizer throughput for large
masks saturates for smaller apertures to a lower value of throughput. [See the
electronic edition of the Journal for a color version of this figure.]

Fig. 3.—Example of apodizer transmission for the geometry of Gemini/
VLT. The minimum intensity transmission is 12% at the edges, and throughput
is high: 63%. A classical Lyot coronagraph with an undersized Lyot stop has
a typical throughput of 40%–60%. The corresponding mask has a diameter of

.4l/D

2. GENERAL PROBLEM OF CORONAGRAPHY WITH
ARBITRARY APERTURE SHAPES

Following the notation of Aime et al. (2002) and Soummer
et al. (2003b), we briefly recall the general formalism of co-
ronagraphy with apodized pupils. The telescope aperture func-
tion with the position vector is denoted by , and isr P(r) F(r)
the apodizer transmission (1 without apodization). At the en-
trance aperture, the wave front amplitude is

W (r) p P(r)F(r). (1)A

A mask of transmission is placed in the focal plane.1! eM(r)
The function M describes the mask shape, equal to 1 inside
the coronagraphic mask and 0 outside ( for Lyot ande p 1

for Roddier).e p 2
At the Lyot stop plane, the wave front is then

e r! uˆW (r) p P(r)F(r)! F(u)M du, (2)C ! ( )2 2l f lfP

where the circumflex is the Fourier transform. This general
relation is valid for any arbitrary aperture shape (rectangular,
circular, or elliptical, with or without central obstruction and
secondary mirror supports) and any mask shape.
The formal problem is to find the mask and the apodizerM(r)
that provide the best cancellation possible inside the LyotF(r)

stop, identical to the entrance pupil in this case. The above
partition of the wave front (eq. [2]) gives a physical understand-
ing of coronagraphy as a destructive interference between the
pupil wave and the wave diffracted by the mask (the con-W (r)A

volution integral). A heuristic illustration is given in Figure 1,

Apodizer function

λ/D

λ
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See: “Apodized Pupil Lyot Coronagraphs for Arbitrary Telescope Apertures”
[Soummer, 2005]
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System Alignment
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Figure: Apodizer and Lyot Stop must be aligned to MEMS DM to within 0.5% and
1% of their pupil sizes, respectively.
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Finding Pupil Centers - Elliptical Hough Transform
[Ballard, 1981, Xie and Ji, 2002]

Want to extract regular features (ellipses) formed by the central
obscurations of apodizers and Lyot stops

Use a generalized Hough transform with ellipse shape class:

(x− x0)2

a2
+

(y − y0)2

b2
= 1

Define candidate pixels based on intensity variations

Define accumulator array for the semi-minor axis

b =

√
a2 [(2ad)2 − (a2 + d2 − f2)2]

a4 − (a2 + d2 − f2)2

d ,
√

(xp − x0)2 + (yp − y0)2

f ,
√

(xp − x2)2 + (yp − y2)2
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Finding Pupil Centers
[Savransky et al., 2013]

Figure: Pupil viewer images of the apodizer only (no FPM or Lyot stop in light
path). Left: Dark subtracted pupil viewer image. Center: Median filtered image
with the candidate pixels for the inner annulus of the apodizer overlaid. Right:
Original image with best solution from Hough transform overlaid.
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Aligning to the MEMS Plane
[Savransky et al., 2013]

Figure: Left: Difference image between poked and flat DM states. Right: Original
image with best solution from Hough transform and intersection of MEMS pokes
overlaid.
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Finding Geometric Shapes

DM pokes on pupil viewer Astrometric calibration spots in IFS image
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Finding Squares

Assumptions:

Four points in the image are in the shape of a perfect square
Points are not the brightest but not the dimmest in the image
Square orientation is arbitrary with respect to image axes
Square size is arbitrary

Procedure:

Select & remove brightest point in image
Test against all other candidate points, looking for squares:

{dk}6k=1 = {‖ri − rj‖ : i, j ∈ {4C2}}

d1 = d2 = d3 = d4 = d5/
√

2 = d6/
√

2

Breadth-first search over candidate points - grows by (n + 1)/(n− 3) for
each new point.
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Finding Squares (Better)

What if we could prune the tree as we search it?

Every square contains a right triangle:

{d′k}3k=1 = {‖ri − rj‖ : i, j ∈ {3C2}}

d′1 = d′2 = d′3/
√

2

Maintain sublist of candidates forming right triangles

Test new candidates against sublist rather than against all candidates
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Finding Squares In Action
[Savransky et al., 2013]
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Finding Squares In Action
[Savransky et al., 2013]

Final satellite spot was added to
candidate list on the 38th iteration

73815 possible combinations of
four spots, or 7770 possible
combinations of three spots from
previous iteration

Only 28 subsets (0.36%) had been
identified as possible candidates
for testing

Total execution time was only 1.45
times longer than in previous case
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Conclusions

High-performance optical systems will continuously become more
automated with stricter alignment tolerances and error budgets

Simple techniques from machine learning and computer vision can be
enormously helpful in automating basic alignment tasks and ensuring
high repeatability

Algorithms presented here are easy to code, and execute well on normal
hardware

Geometric feature identification is applicable to a variety of optical and
laser systems and tasks
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